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Abstract. A general phase diagram for isotropic antiferromagnetic chains has been proposed 
recently, using conformal field theory. This is developed further to predict the spectrum 
of finite chains, including logarithmic corrections. These predictions are tested against 
Bethe ansatz and exact diagonalisation results for various Hamiltonians with s = i, 1 and 
2.  Logarithmic corrections to correlation functions and the scaling of gaps for infinite 
systems are also given. 

1. Introduction and conclusions 

Recent developments in conformal field theory have led [l-31 to a rather complete 
phase diagram for isotropic antiferromagnetic chains of arbitrary spin s. The set of 
all minimal isotropic critical theories is given by the Wess-Zumino-Witten (wzw) 
non-linear (+ models with topological coupling constant k, a positive integer [ 11. The 
only stable critical point is k = 1, which corresponds to a free boson. This is an  
attractive fixed point for a range of half-odd-integer-s Hamiltonians [2,3]. Integer-s 
Hamiltonians generally show non-universal behaviour with a gap [4]. The higher-k 
theories represent multicritical points which can be attained by adjusting one or more 
parameters in the spin Hamiltonian. In particular, the Bethe ansatz integrable spin-s 
Hamiltonian [5-71 is attracted to the k = 2s multicritical point. 

In this paper we will help to verify this picture by comparing the field theory 
predictions to other exact theoretical results on the spectrum of finite chains. These 
are of three types. We present results of exact diagonalisation of s = 4 chains of length 
20. We also present numerical results obtained using the Bethe ansatz for solvable 
Hamiltonians with s =$, 1 and While the solvable s = $  Hamiltonian is just the 
conventional Heisenberg model, the s = 1 Hamiltonian contains both bilinear and  
biquadratic [ ( S ,  S, , , ) ’ ]  terms and the s =+ Hamiltonian contains bilinear, biquadratic 
and  bicubic terms. We present results for chains of length up to 2048, 256 and  100 
for these models with s =f, 1 and + respectively. Finally we compare our results with 
the analytic Bethe ansatz expressions of Woynarovich and Eckle [8] for the first few 
corrections in 1 / L  to the energies. 

These data can be used to test the proposed phase diagram [2,3] because the 
scaling of energies with length, L, shows a universal behaviour determined by the 
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critical theory. In general, in a conformally invariant theory the energy levels form 
towers of the form 

E - Eo = (2 T U /  L)( x + n ) (1) 

where Eo is the ground-state energy, v is the velocity of 'light', n is an arbitrary positive 
integer and x is the scaling dimension of a primary field [9]. A tower of this kind 
appears for each primary field. Thus the complete set of critical exponents can be 
determined from the finite-size spectrum. For a system which is not exactly conformally 
invariant, but only asymptotically so at low energies, there are corrections to this 
formula which vanish more rapidly as L +  CO. They can be associated with irrelevant 
operators in the Hamiltonian describing the system [lo]. An operator with dimension 
2 + a leads to corrections proportional to I /  L1+a. Marginally irrelevant variables 
produce logarithmic corrections, x + x + d/ln L, in ( l ) ,  where d is a universal number, 
determined by p function coefficients, or equivalently three-point functions [ 111. 
Corrections to the ground-state energy of O( 1/ L) and O[ 1/ L(ln L)3] are also universal 

The exact values of all these parameters will be obtained here from the wzw theories 
and the predictions compared with exact Bethe ansatz and numerical finite-chain 
results. The logarithmic terms normally imply that finite-chain convergence is extremely 
slow; the next correction is only down by an additional power of l / l n  L. This normally 
makes it very difficult to probe the critical behaviour. This can be seen rather clearly 
in our Bethe ansatz results on long chains. We get around this problem, for a particular 
Hamiltonian of only 20 sites, in a way first exploited by Jullien and Haldane [14]t. 
Since there is only one marginal operator we should be able to change its coupling 
constant by varying any parameter in the underlying microscopic Hamiltonian. We 
consider a nearest-neighbour plus second-nearest-neighbour s = $ chain and vary the 
ratio of the two couplings. We find a special value of this ratio where the log corrections 
vanish and excellent agreement with the analytic predictions are obtained from a chain 
of only 20 sites. 

On the whole these comparisons suggest that the various calculations are consistent. 
The agreement between numerical and analytic results is particularly striking for the 
short s = 5 chain with vanishing log corrections and the integrable (Heisenberg) s = 5 
chains with length up to 2048. The agreement for the shorter s = 1 and 3 solvable 
chains is not as good, but probably reasonable considering the modest lengths and 
the log corrections. The agreement with the analytic Bethe ansatz formulae is exact 
except for an unexplained discrepancy in one dimensionless coefficient. 

The general formula for the excitation energies with logarithmic corrections was 
first given in [l5]. The excitation energies for the s =; case were derived in [16] and 
for the related Potts model in [ 171. Bethe ansatz results were compared with conformal 
field theory predictions for the s = 4, 1,;  and 2 case in [ 181. Other related results were 
obtained in [19]. 

In the next section we review the proposed critical theories. In § 3 we derive 
formulae for the finite-chain spectrum. The multiplicative logarthmic corrections to 
correlation functions and to the scaling of infinite- L gaps upon adding relevant 
operators are determined by the same renormalisation group coefficients that determine 
the log corrections to the finite-L scaling in the gapless phase. In § 4 we derive these 
log corrections to the correlation function and the log correction to the scaling of the 

[ll-131. 

t Haldane has  shown ( in  his 1988 letter [14]) that  even greater degeneracies occur with a l j r '  interaction. 
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gap upon moving away from the integrable point for the s = 1 bilinear-biquadratic 
model or upon adding an alternating interaction for half-odd-integer s. In  D 5 we 
compare our  field-theoretical predictions with exact diagonalisation of finite s = $chains 
and  in $ 6 with Bethe ansatz results. 

2. The critical theory 

The approach to quantum spin chains used in [3] is based on the strong-coupling limit 
of the Hubbard model, and  its multiband generalisation to obtain higher s. The analysis 
of these models is in fact based on the weak-coupling limit. The basic idea is to separate 
the gapless spin excitations from the charge excitations which have a gap (for s>$, 
additional types of excitations also occur, associated with the 'colour' quantum numbers 
describing the various bands). Renormalisation group and universality ideas suggest 
that the only effect of going from weak to strong coupling is to increase the gap for 
the charge (and colour) excitations; the effective low-energy theory describing the 
gapless spin excitations is unchanged. This separation of spin excitations from charge 
(and colour) is achieved by bosonisation. In [ l ,  31 non-Abelian bosonisation [20] was 
used in order to keep manifest the isotropy of the problem, which tends to be concealed 
by the more conventional Abelian bosonisation. 

Before briefly reviewing the essential results of bosonisation, we examine the 
symmetries of the non-interacting electron gas. The tight-binding model is written 

H = t c ( + , p + $ r + l , a  + HC) 
I 

where the repeated spin index a is summed over t and 1- and HC stands for Hermitian 
conjugate. This model has charge and spin symmetries 

where U t  is an  SU(2) matrix, and repeated spin indices are summed. Taking the 
continuum limit for a half-filled band we obtain independent left- and  right-moving 
electrons, with Hamiltonian density 

(Here U = 2 t  is the Fermi velocity.) This model has chiral charge and spin symmetries 
under which the left and  right electrons transform independently. In other words the 
charge and  spin of left- and right-moving electrons are separately conserved. 

The Hubbard-model interaction introduces terms, among others, of the form 
E / , , ~ ~ / ~ ' $ ~ ' ~ / ~ , I , ! J ~ ~ E ~ '  (where E , , ~  is the antisymmetric tensor and repeated indices are 
summed) which break the chiral symmetries down to the diagonal subgroup under 
which the left- and right-moving electrons transform identically. Thus the continuum 
model has no more charge or spin symmetry than the lattice model. The Hubbard-model 
Hamiltonian and some of its generalisations, which describe higher-spin systems, flow 
to fixed points under renormalisation group transformations. It is a remarkable fact 
that in all cases these fixed-point Hamiltonians have the chiral spin symmetry of the 
non-interacting fermions (although the Hamiltonian is not the same). This was shown 
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in [ l ] .  Essentially the conformal invariance of a fixed point is only compatible with 
chiral symmetries, not purely diagonal symmetries. 

It follows that the energy levels of the conformal field theory describing the fixed 
point can all be classified by two different spin quantum numbers, SL and SR, just as 
is the case for the continuum non-interacting electron model. The total spin is just 
the sum 

Only the total spin is an  exactly conserved quantity of the quantum spin chain. The 
separate left and right spins can only be used to classify the low-energy states, which 
are described by the fixed-point Hamiltonian. This means that there are irrelevant 
operators in the Hamiltonian which break the higher chiral symmetry. However, these 
make contributions to the energies which become negligible for L+co. 

The various possible critical points which may occur can be conveniently classified 
by their current algebras [21]. The generators of left and right SU(2) rotations of the 
non-interacting fermion model are 

where the era are Pauli matrices. The three components of J L  obey commutation 
relations known as the Kac-Moody algebra. There is a normalisation parameter in 
this algebra known as the Kac-Moody central charge, k, which is always an integer. 
For the non-interacting fermion model, it is equal to the number of colours, and so 
k = 1 for the ordinary Hubbard model. The minimal conformal field theory (with the 
smallest spectrum) containing currents obeying the Kac-Moody algebra with central 
charge k is the Wess-Zumino-Witten non-linear U model (wzw model), with topologi- 
cal coupling constant k. A complete classification of primary fields and  of the spectrum 
has been performed for these models [22]. These operators can be classified according 
to their left and right spin. There is one operator with sL = sR = 0, i, . . . , k/2.  Its scaling 
dimension is 

x = 2 s L ( s L + 1 ) / ( 2 + k ) .  

The operators with sL half-odd integer (integer) are odd (even) under translation by 
one site; thus they correspond to states with momentum near T (zero). Because we 
are considering translationally invariant spin chains, only the integer sL operators can 
be generated in the effective Hamiltonian. We note that for k = 1 there are no permitted 
reievant operators (the sL = 0 field is the identity) and for k = 3 there is one relevant 
operator with sL = 1, x = :. 

In  addition to these relevant operators there is a very important marginal operator 
for all k, namely JL - J R .  ( I t  is not a primary field of the Kac-Moody algebra.) This 
will be marginally relevant or irrelevant depending on the sign of the coupling constant. 
While the coupling constant has the irrelevant sign for the nearest-neighbour Heisenberg 
model, it can be made to pass through zero and change sign by adding a second-nearest- 
neighbour interaction. The k = 1 wzw model is the only stable critical point, and  
describes the generic gapless phase for half-integer-s chains. The integrable spin-s 
chain flows to the k = 2s multicritical point. Perturbing the Hamiltonian will in general 
induce flow away from this critical point to the k = 1 point, for half-integer s or to 
non-universal short-range behaviour for integer s. 
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3. Spectrum 

3.1. O( l /L )  terms 

The spectrum of a general conformal field theory mimics the separation into left and  
right movers observed above in the non-interacting electron model. The left and right 
components of the energy-momentum tensor, P L , R ,  give i the momentum and l / v  
times the energy of the left (right) movers. Thus the momentum and energy are given 
by 

P =  PL- P R  (2a )  

E = v(P,+ PR). ( 2 6 )  

In general, primary fields have a left and  right scaling dimension xL,R, with the sum 
being the dimension x discussed above. The conformal towers are obtained by applying 
raising operators to the primary states. The towers are classified by two integers nL,R, 
the single integer, n, discussed above being the sum 

P L , R =  (2rIL)(xL,R+ nL,R). 

The wzw models have [22] primary fields of dimension xL = xR = sLo(sLo+ 1)/(2+ k), 
with sLo = sRo = f, 1, . . . , k/2 being the left and right spin. These will correspond to the 
lowest states in the conformal towers. Since the primary fields with half-integer sLo 
are odd under translation by one site, the corresponding lowest states have momentum 
r and for these states equation (2a) becomes 

P = P L -  P R +  T.  

In general the raising operators are just Fourier modes of the energy-momentum 
tensor. In conformal field theories with conserved currents, the Fourier modes of the 
currents can also be used as raising operators. In the SU(2)-invariant case there are 
raising operators which raise PL and also S [  or PR and S i  by one or  more units. Thus 
a general level in a conformal tower is classified by n L ,  n R ,  sL, sR, S t  and S i  (with 
s L >  sLo, s R >  sRo). To complete the specification of the conformal towers we must give 
the multiplicity of each level. 

The representations of ordinary SU(2) can be found by starting with some state 
with some assumed quantum numbers, Is, S')  = Is, -s), making the assumption 
S-Is, -s) = 0 (in order to get a finite-dimensional representation) and then applying 
S+ using the commutation relations and the condition S 2  = s(s + 1). A similar construc- 
tion can be performed for the Kac-Moody algebra. We begin with the lowest states 
in a conformal tower of spin sLo= sRo, which have multiplicity one, S;=  -sLo, -sLo+ 
1 , .  . . , soL and S i  = -sR0, -sRo+ 1,. . . , sRo. We apply raising operators to generate 
the complete tower. Because the left and right currents commute, we may calculate 
the left conformal tower separately, giving a set of multiplicities m L  as a function of 
n L ,  sL and  S [ .  The same tower is obtained using the right raising operators. The 
multiplicity of a state in the combined conformal tower is then 

m = m L ( n L ,  s L ,  SI)mR(nR,  sR, S i ) .  

It turns out to be more convenient to specify multiplicities as a function of n L  and S l  
only; a unique classification into SU(2) multiplets such that S l =  -sL, -sL+ 1,. . . , sL 
is then determined, The left-handed conformal tower can be constructed, beginning 
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from the lowest level with some specified spin sLo, using three rules which follow from 
the Kac-Moody algebra. 

( i )  m ( n L ,  St) = m ( n L ,  -St). 
( i i )  Starting from any state with some value of n L ,  S t >  0, follow the diagonal line 

in the n L ,  S t  diagram to the point -St -  k, nL+2S t+  k. This point has the same 
multiplicity. All points in between have non-zero multiplicity, but all points further 
along the diagonal (at larger nL)  have multiplicity 0. 

These rules determines the shape of the conformal tower in the n L ,  S t  diagram. 
This shape is drawn in figure 1 for k = 1 and k = 3, for the conformal towers with 
sLo = sRO = 0. This shape determines the susceptibility. To see this note that the envelope 
of the conformal tower of spin sL, is given by the states with 

S t  = + ( s L ~  + p k )  

n L  = [(st)2 - (SL0)21/k. 

n L  = 2psL, + p 2  k p = o ,  1 , 2  ) . . . .  
This envelope is the parabola 

(3) 
To calculate the susceptibility, we add an  external field h to H. This shifts the energy 
of an arbitrary state as 

E +  E O + ( ~ T ? J / L ) ( X + ~ L + ~ R ) -  h(S[+S",). 

Taking the limit of large L before taking h+0 ,  we may approximate nL,R  by their 
values on the envelope of the conformal tower for large S' 

E E 0 + ( 2 ~ v / L k ) [ ( S t ) * +  (Si)']- h ( S t + S A ) .  

We now minimise E with respect to SL,R giving 

S[,R= h ( L k l 4 ~ ~ )  

E ( h ) = Eo - $ h '( L k /  2 TU ) . 
Thus the susceptibility is 

x -d2E/dh2= L ~ / ~ T u .  

This, of course, agrees with the result derived earlier [23] by expressing x in terms of 
the current two-point function. 

E 
I b )  e e 0 0 0 4 )  e e e 0 e 

0 0 e e e 0 0 e e e 
0 0 e e 4 1  e 0 e E 

i o )  

- 2  0 2 - 6  -4  - 2  0 2 4 6 
S Z  S* 

Figure 1. The shape of the Kac-Moody conformal towers for: ( a )  k = 1, sLfl = s,,,=O; ( b )  
k = 3, sLi, = sR0 = 0. 
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(iii) The non-zero multiplicities are determined as follows. All states reached from 
the lowest states by the construction of rule (i) have m = 1. For each value of (St, n L )  
for which m is non-zero, as determined by rule (i), the following equation holds: 

cr 

C ( - l ) ’m[S t  - j ,  n - j ( j  + 1)/2] = 0. 
,=-s 

The sum may be restricted to the states of non-zero m as determined by rule ( i )  (in 
particular, terms with [ n  - j ( j + 1 ) / 2 ] < 0  may be dropped). Thus there is a finite 
number of terms for each value of (St, n L ) .  

The first few levels of the two left conformal towers for k = 1 (with sLo = 0 or sLo = f), 
and the four left conformal towers for k = 3 (with sLo = 0, 4, 1, $) are shown in table 
1. We give the degeneracies of complete spin multiplets, rather than states of definite 
S;.  

The k = 1 theory is equivalent to a free boson, with Lagrangian 

L = ;d,cpd’lcp 

and periodicity condition 

cp(x+L) = cp(x)+JS;;n 

Table 1. Degeneracies of s, multiplets. 

k =  1, sLO=O k = 3 ,  s L 0 = i  
-2 - 2  s - I  

L - 2  L - 2  L - 2  s,=o s , = l  s , = 2  S L = $  nL 

5 2 4 1 
4 2 2 1 
3 1 2 
2 1 1 
1 0 1 
0 1 

k = l ,  s,,,=+ 

12 14 8 2 
7 8 4 1 
4 4 2 
2 2 1 
1 1 
1 

k = 3 ,  s , = l  

s,=o s , = l  s,=2 s,=3 s,=4 

5 4 3 
4 3 2 
3 2 1 
2 1 1 
1 1 
0 1 

8 16 14 5 1 
4 10 7 3 
3 5 4 1 
1 3 2 
1 1 1 
0 1 

k = 3  s -2 k = 3, sL,) = 0 > L - 2  

- 2  7 
L - 2  s L = z  -I - 2  

*L s,=o s,=1 s , = 2  s , = 3  L - 2  L - 2  

5 3 9 6 3 10 12 7 2 
4 3 4 4 1 6 7 4 1 
3 1 3 1 1 3 4 2 
2 1 1 1 2 2 1 
1 0 1 0 1 
0 1 0 1 
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where n is an integer. In this case, as can be easily checked, the lowest states of given 
integer sL or sR all lie on the envelope of the sLo = sR0 = 0 conformal tower and hence 
obey the equation 

E - Eo = ( 2 T U /  L ) [  ( SJ2  + (SR)’]. (4) 

States with half-odd-integer sL,R lie on the other conformal tower with sLo=sRo=i .  
Again all lowest states of given sL,R lie on the envelope, this time obeying n L =  st - -$ .  
Since x = i the energies of these states also obey equation (4). 

We present calculations below for states with momentum 0 or T. These states have 
n L  = n R  = n / 2 .  The values of (sL, sR) for the first few levels of the k = 1 multiplets are 
shown in table 2. For each multiplet with definite values of sL and sR the total spin 
multiplets are determined by the usual rules for adding angular momentum: sT = s,+ sR,  
sL+ sR- 1,. . . , IsL- sRI. The degeneracies of the multiplets of given total spin as a 
function of the scaled energy gap, L( E - E 0 ) / 2 m  are given in table 3 for k = 1. Very 
large degeneracies set in as n increases, which are entirely ‘accidental’ from the point 
of view of the symmetries of the spin chain. They are a consequence of the conformal 
and chiral symmetries of the critical theory. 

Although the ground-state energy itself is not a universal quantity, the 0 ( 1 / L )  
correction is universal, being determined by the conformal anomaly parameter, c, 
which has the value 

c = 3 k /  ( 2  + k ) .  

The ground-state energy has the form 

Eo= eoL- T C U / ~ L S  higher-order terms. 

One way of understanding this result is to realise that a field theory at zero temperature 
on a line of length L is equivalent to the same field theory at temperature v / L  on an 

Table 2. (sL, sR) multiplets for k = 1. 

n P = 0 (sL0 = sRo = 0, conformal tower) P = ?r (sLo = sRo = $, conformal tower) 

Table 3. Degeneracies of total spin multiplets for k = 1. 

P= 0 P= 7 7  

[(L/2?rt . )  ( E - € , , ) ]  s = o  s = l  s = 2  s = 3  s = o  s = l  s = 2  s = 3  

2 3 1 

1 1 1 

2 4 3 1 

1 1 

1 1 
0 1 
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infinite line. The ground-state energy is then equivalent to the free energy per unit 
length divided by the product of temperature and velocity: 

fl T = eo/ T - m T / 6 v  

implying a linear specific heat, 

C (  T )  = .rrcT/3v. 

The slope of the specific heat measures the density of states and is thus a universal 
number. Indeed the specific heat can be related to the two-point correlation function 
of the Hamiltonian, which is proportional to the conformal anomaly parameter, c. 

3.2. 1 /L  In L terms 

The degeneracies of the excited states are broken by the finite-size corrections which 
vanish more rapidly than 1/ L. These are a consequence of irrelevant operators in the 
effective Hamiltonian which do not respect the full conformal and chiral symmetry, 
but only the exact symmetries of the spin chain, namely the diagonal SU(2) subgroup 
and the lattice symmetries. These higher-order corrections can be calculated in first- 
order perturbation theory in the irrelevant operators, replacing the coupling constants 
by their renormalised values at scale L. Thus irrelevant operators of dimension 2 + d 
give corrections to the energies of 0(1/ L l t d ) .  

Marginal operators give corrections which are only suppressed by an additional 
logarithm [ l l ,  131. If we write the marginal operator in the Hamiltonian as 

6 H  = g dxcp 

then the perturbation to the excitation energy of a state Icp,) is 

where the matrix element can be conveniently expressed in terms of the three-point 
function involving the marginal operator and the operator 'pi which corresponds to 
the state l c p i ) .  ( In  conformal field theory there is an operator corresponding to each 
state.) In what follows we assume that cp and cpi are primary fields with respect to the 
Virasoro algebra, with xL = x R .  In general higher states in the Kac-Moody conformal 
towers are obtained from the bottom state by applying Fourier modes of JL and Fourier 
modes of TL. In what follows, the states icpi) are assumed to be obtained by applying 
Fourier modes of JL only. While it is not immediately obvious exactly which states 
these are, they certainly include the lowest-energy multiplet with any given quantum 
numbers sL,R, since applying Fourier modes of T L , R  always raises the energy without 
changing the spin. The second assumption, x L = x R  implies that the states have 
momentum 0 or T. Normalising the operators to have two-point functions 
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Equation ( 5 )  can be ‘renormalisation group improved’ by replacing g by g ( L )  the 
effective coupling at  scale L [ l l ] .  If g is initially small, the one-loop p function gives 

( 7 )  g ( L )  = g / ( l +  .rrbg In L l L J  

(01 cp ( rl)  cp ( r2) cp ( r3 1 I) = - b ( 1 r 121 2 l  r 2 3  1 2 1  r l3  I 
where b is again determined by a three-point function 

and Lo is the scale at which the bare coupling g is determined (essentially the lattice 
spacing). We have defined the sign of the marginal operator, cp, so that the term is 
marginally irrelevant for g>O. At very large L, g ( L )  becomes independent of its 
starting value 

g ( L ) + l / r r b I n L  

giving a universal logarithmic correction to the energy 

S (  E ,  - E,) = 4.rrvb,/ bL In L. 

This asymptotic form of g ( L )  holds even if g is not initially small. In general, In L 
must be much greater than 1 before this asymptotic expression for g ( L )  holds. If g 
is initially small then g (  L )  will be essentially constant out to enormously large L. Also 
note that second-order perturbation theory would give terms proportional to g (  L)’ 
and hence only suppressed by one extra power of In L. 

Hence from a practical point of view, the universal asymptotic expression is not 
very useful for studying numerical results for relatively small systems. However, (5) 
is useful when g is small. Although it will not be possible to predict the precise value 
of g in general, ( 5 )  predicts the relative size (and sign) of the corrections to all energy 
levels corresponding to primary fields with respect to the Virasoro algebra. By varying 
a parameter in the microscopic Hamiltonian one can arrange to sit close to the critical 
point where the marginal operator is absent. In general g should grow linearly as an  
arbitrary parameter is varied in the microscopic Hamiltonian which moves the critical 
theory away from the fixed point. 

The coefficients b, which determine the shifts of the energy levels due to the marginal 
operator take a particularly simple form for isotropic spin chains. Let us consider the 
matrix elements of the marginal operator J L .  J R  in the states in some multiplet of 
definite sL and sR, This is proportional to SL SR, for the various states in the multiplet. 
This in turn is given by the total spin s, which takes on values between sL+sR and 
IsL- sRI. Explicitly, 

S L  S R  =;[ SL + S R ) ’  -s:-si] 
= $[s( s + 1 )  - s L ( 3 L - k  1 )  - s R (  s R +  I ) ] .  

We may easily relate the magnitudes of the splittings between different multiplets. 
This follows from (6), which relates the matrix element of J ,  - JjR to the three-point 
function involving JL * JR and the primary field corresponding to the state in question. 
This three-point function is determined by the operator product expansion coefficient 
involving JL (or JR) and the primary field 

J,(z)cp,(z’) = sLcp,(z)/27T(z-z’)+. . . . 
The universal coefficient of this operator product expansion follows from the fact that 
5 dx JL = SL, a conserved charge. The current two-point function is determined by the 
Kac-Moody central charge as 

( J t ( z ) J : ( O ) )  = 6 “ h k / ( 8 ~ 2 z z ’ ) .  
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Thus the normalised marginal operator is 

~p = - ( 8 r 2 / \ / 5 k ) J L  * J R .  

Since J L  and  J R  commute, we immediately conclude that 

b, = -SL - S ~ ( 2 / & k ) .  

Thus the 0 ( 1 / L  In L )  shift in the energy is proportional to SL SR with a constant of 
proportionality which is the same for all states which correspond to primary fields. 
Here primary field refers to the Virasoro algebra classification, not the Kac-Moody 
classification. 

This formula also determines the renormalisation group coefficient, b, since J L  - J R  

is itself a primary field (with respect to the Virasoro algebra) with quantum numbers 
sL = sR = 1 ,  s = 0 and hence SL SR = -2, and 

b = 4/\/5k. 

In fact there is actually a more straightforward derivation of 6, which makes it 
clear that ( 5 )  holds with b, as given above, for arbitrary states with P=O,  not just 
primary states. Consider 

( ~ I ~ J L ( ~ )  ’ J R ( y ) l P i )  

for any state, lp,), with P = O .  This quantity must vanish at  L+co by translation 
invariance and  the fact that J R  and J L  are functions only of the independent light-cone 
coordinates, xi. For finite L it can only have the form constant/L2, as dictated by 
the dimension of J. Noting that the integral over x and y gives S ,  SR, the product 
of conserved spin operators, we see that 

( J L ( x )  * J R ( y ) )  = S L  ’ s R /  L2. 

This implies the same value of b, obtained above. 
Thus the excitation energies for P = 0 states, including log corrections, are 

E, - Eo = ( 2 m /  L ) ( x ,  - SL - &/In L ) .  (8) 

The marginal coupling also makes a correction of O ( g 3 )  to the O ( l / L )  term in the 
ground-state energy, 

Eo= eoL-  ( . i r /6L) (c+2r3bg3) .  

For very large L, we may replace g by its universal renormalisation group improved 
value, ( 7 ) ,  giving 

Eo = eoL - ( . ir/6L)[3 k /  ( 2  + k )  + 3 k2 /8 (  In Q3]. (9) 

Again, for comparison with numerical work on chains of moderate length, only the 
first of these two formulae is likely to be useful. The shifts of all excitation energies 
as well as the shift of Eo are predicted in terms of a single unknown coupling constant, 
g, in the region where g is small. 

4. Other logarithmic corrections 

The logarithmic corrections to the excitation energies correspond to corrections to the 
anomalous dimensions, x,, of the primary fields. Therefore, these same coefficients, 
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b , / 2 b ,  determine logarithmic corrections to correlation functions, and to the scaling 
of the gap when the relevant operator cp, is added to the Hamiltonian, in the infinite- 
length system. For completeness we review the general form of these logarithmic 
corrections and give explicit formulae for some cases of current interest. 

The O ( g )  corrections to the scaling dimensions x, that we discussed above are 
corrections to the anomalous dimensions of cp, : 

y, = x, + b,g2.rr + O(g’). 

The correlation function 

G , ( r )  = (cp,(r)cp,(O))  

obeys a renormalisation group equation 

[a/a(ln r )  + P ( g ) a / a g + 2 y I ( g ) l G , ( r ,  g )  = 0. 

Here p ( g )  = -.rrbg2+O(g3). Working to first order in g we have 

a ( 1 / r 2 ‘ ~ )  exp( -(b,4.rr) {‘d(ln r ’ ) g ( r ’ ) ) .  
10 

At moderate values of r the exponent 2x, will simply appear to be corrected by the 
non-universal quantity b,g2.rr (assuming g is small), but at exponentially large distances, 
using (7 )  for g ( r ) ,  the asymptotic form is given by 

G , ( r ) K  l/[r2”l(ln r )4hi ’b] .  

Note that this is a multiplicative correction rather than an additive one as occurred in 
the finite-size energies. The higher-order terms in y, and p give additive corrections 
which are suppressed by additional powers of l / l n  r. As an  application of this general 
result, let us consider the spin-spin correlation function ( S (  r )  S(0)) .  

The continuum-limit representation of the spin operators is 

S (  r )  a ( - l )r  x constant x Tr g a  

where we have kept only the staggered part of S which dominates at large separation. 
The primary field g has sL = sR = i, and the operator, Tr ga has total spin, sT = 1; thus 

2 b , / b = - $  

and 

( S ( r )  S(O))K (-1Ir(In r ) ” * / r  

for the k = 1 critical theory describing generic gapless half-odd-integer-s systems. For 
general k the In r factor is the same but the exponent of l / r  becomes 3 / ( 2 +  k). 

Another situation in which logarithmic corrections arise is in calculating the scaling 
of a gap (for the infinite system) with the coefficient of a relevant operator which is 
added to the Hamiltonian. The correlation length 6, which is proportional to the 
inverse gap, is the scale at  which the effective coupling becomes O( 1). The p function 
for the relevant operator, including the term linear in g, is 

dg , /d( ln  L ) =  ( 2 - x I ) g ,  -2.rrblgg,. 
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Integrating, and  using the asymptotic form for g ( L ) ,  we find 

In g , ( L ) / g ,  = ( 2 - x , )  In L - ( 2 b , / b )  ln(ln L)+constant 

where g ,  is the bare value of the relevant coupling, at the cutoff scale, L. 
Setting g, (6) = 1, we find 

l / g ,  a ~ * - * ~ / ( l n  [)*”b. 

Thus, the mass gap, m, scales as 
m ( g ,  0~ g f/(’-xz)/ 1 In g, I ”#/’(’-‘! 

We consider two applications of this formula of current interest. One is the 
logarithmic correction to the spin-Peierls exponent. An alternating interaction 

H + 2 , S ;  S,,,[1+(-1)’(Y] 

introduces the relevant operator Tr g into the continuum-limit Hamiltonian. (Tr g is 
normally not permitted because it is odd under the symmetry g + -g ,  which corresponds 
to translation by one site.) This operator has sL = sR = 1 and sT = 0, and  so 

2b , /b  =a .  
The dimension is x = 3/2(2+ k )  = i for k = 1. Thus 

mcca2’3 / l~n  al”’ 

(for generic half-odd-integer-spin systems). For the s =; case this agrees with the 
result derived previously [24].  

Our second example involves the k = 2  multicritical point which occurs for the 
Bethe ansatz integrable spin- 1 chain. If we consider the general bilinear-biquadratic 
s = 1 Hamiltonian with 

~ = C [ S , . S , + l - ~ ( s , . ~ , + l ) 2 1  

then the integrable p = 1 theory has the k = 2 critical theory. There is a gap for p # 1 
with a dimerisation transition taking place at the p = 1 critical point. There is only 
one relevant operator in the k = 2 critical theory permitted by the isotropy and  transla- 
tional symmetries, namely (Tr g)’, which has x = 1 ,  sL = s R =  1 ,  sT= 0,  and hence 
2b,l b = 2. Thus 

~ ~ / ~ - P l / ( ~ ~ / l - P l ) 2 .  

5. Numerical diagonalisation 

The logarithmic corrections make it difficult to extract critical exponents from the 
diagonalisation of small systems in cases where the Bethe ansatz does not work, in 
which case L is typically in the range 10-30. However, one way around this problem, 
which was first exploited by Jullien and Haldane [ 141, is to study modified Hamiltonians 
in which the marginal coupling is small. In general, varying any parameter in the 
microscopic Hamiltonian should vary the marginal coupling constant. Thus we expect 
to be able to find a point where it vanishes. In the s =; model this can be achieved 
by varying a frustrating second-nearest-neighbour coupling 

H =I [S, S,,, +J*(S ,  S,,,)’]]. 
, 
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Figure 2. Numerical results for lowest excitation energies of s = f chains of length 20, for 
the model with vanishing log corrections (0, +, 0; J J J ,  =0.25) ,  and the pure nearest- 
neighbour model ( x ;  J , = O ) ,  for ( a )  P = O  and ( b )  P =rr. 

The critical point where g vanishes, separating the gapless and  dimerised phases, is 
[14] at J,=O.25. At this point the In L corrections are absent and good measurement 
of the critical exponents can be achieved for L = 2 0 .  The excitation energy of the 
lowest few states at P = 0 and T are plotted in figure 2 as a function of their spin. The 
structure of the conformal towers, with lowest weight x = 0 and  f appear very clearly, 
and these values of x can be measured to a few per cent. The large degeneracy of 
states at higher energies due to the S U ( 2 ) x S U ( 2 )  symmetry of the critical theory 
emerges dramatically. The degeneracies match those given in table 3. The small 
splittings of the supermultiplets, in this case, is nor determined by the marginal operator, 
but by the irrelevant operators, and should be O( 1/ L 2 ) .  For comparison we also show 
a few of the excitation energies for the pure nearest-neighbour model with the same 
length, 20. Note that the In L corrections produce a much larger splitting of the 
supermultiplets in this case. 

6. Bethe ansatz 

Recent progress in extending the Bethe ansatz solution to finite-size systems allows 
checks on the above analytic predictions. These confirm the identification of the critical 
theory as well as the general principles of conformal field theory. 

There are actually two types of finite-size Bethe ansatz results with which we can 
make comparisons. Analytic expansions for energies in powers of 1 / L ,  l / ln  L, etc 
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have been calculated from the Bethe ansatz. These measure the universal renormalisa- 
tion group coefficients, b, .  Also numerical Bethe ansatz results exist for large chains 
of specified length. These allow measurement of the effective coupling, g ( L ) ,  at 
intermediate L before the asymptotic behaviour, l / r b  In L has been reached. 

6.1. Analytic results 

Woynarovich and Eckle [ 8 ]  have calculated the excitation energies of a class of states 
to O ( l / L  In L )  and the ground-state energy up to order l /L(ln L)3 for the integrable 
s =$  Heisenberg chain. The states that they consider are those of lowest energy for 
given s. Such states have the minimum possible sL, sR:  s L =  s R =  s/2, and hence 
SL SR = s2/4. They are on the envelope of one of the two conformal towers (that 
with s L = s R = 0  or 4 for s even or odd respectively). Thus, using (5) and (8), the 
excitation energies, as a function of s are 

E , - E , = ~ ( ~ T z ) / L ) ( ~ - ~ I ~  L)s2.  

This agrees with [ 81 when ZI = ~ / 2 ,  the value determined from the Bethe ansatz at L = 00. 

Our analytic formula for the ground-state energy, (9) is 

E o / L =  ~ ~ - ( ~ ~ ) / 6 L ) [ l + ~ ( l n  LI3]. 

Inserting U =  77/2 gives the result of Woynarovich and Eckle except that they have the 
factor of 4 replaced by 0.3433. We do not understand this discrepancy. 

Numerical Bethe ansatz results were obtained for the ground-state energy and the 
gap to the lowest (triplet) excited state by Woynarovich and Eckle [8] for chains of 
length up to 1024 for the s =$  model. We have extended this to L=2048 and also 
calculated the gap to the lowest singlet excited state, which is the other element of the 
(f, 4) multiplet at P = T. We have also calculated the same quantities for the integrable 
s = 1 and s = $ models up to L = 250 and 100 respectively. 

Numerical results for the eigenvalues of the exactly solvable spin-s chains are 
obtained by finding the complex solutions [6] of 

[(A, -is)/(A, + is)]L = - (A, - hk - i ) / (A,  - A k  + i) j = 1 , .  . . , 1. (10) 
k = l  

The energy and momentum of the state then are given [6] by 
I 

E = -  2 s/(s2+A?) 
j m = l  

P = [2 tan-'(Aj/s) - 771 mod 277. 
j = l  

In the thermodynamic limit L+w, the structure of the ground state and of the 
low-lying excited states has been discussed by Faddeev and Takhtajan [25], Takhtajan 
[6], and by Babujian [7]. These authors find that the solutions to (9) are grouped in 
n-strings of the form: 

A,,a = A, + (i/2)( n + 1 - 2cy) CY = 1, .  . . , n 
where the 'centre' A, is real. 

For finite L we find deviations from this structure. In particular, the imaginary 
parts of the solutions are generally not interger multiples of i/2. The structure of the 
solutions for different states, as observed in our numerical calculations, is as follows. 
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s = f .  In the ground state there are L / 2  real A. The lowest triplet excited state with 
P - Po = n- ( Po is the momentum of the ground state) has L / 2  - 1 real A, whereas the 
singlet excited state has L / 2 - 2  real A plus a complex pair at exucrly +i/2. 

s = 1. In the ground state there are L / 2  complex pairs, with J Im A,l = + + E / ,  and 
E, > 0. In the triplet excited state there are L / 2  - 1 such pairs, but now with 6, < 0, 
plus one A equal to 0. In the singlet state there are again L / 2 -  1 pairs with E /  < 0 ,  
plus a pair at exactly =ti. 

s = 3 / 2 .  In the ground state there are L / 2  real A and L / 2  complex pairs with 
/ Im  AJi = 1 + > 0. The triplet excited state has L / 2  - 1 real A and L / 2  complex 
pairs, now with < 0. The singlet state has L / 2 - 2  real A and L / 2  - 1 pairs, again 
with .E~ < 0, plus four A at *i/2, *3i/2.  

In all cases the A are distributed symmetrically in the complex plane, i.e. if A is 
part of the solution, then -A and  A ”  also are. The contributions of the complex pairs 
at *is to the energy and  momentum of the singlet excited states are obtained from 
(1 1) by the limiting process A = *is + A,  A + 0. In this way one obtains P - Po = .TT for 
all the singlet excited states discussed here. 

The structure of the states considered here for s = $ agrees with the conclusions of 
Faddeev and  Takhtajan [ 2 5 ] .  On the other hand, the structure we find for the singlet 
excited states for s = 1 and  i is apparently quite different from that found by Takhtajan 
[ 6 ] ,  who finds a combination of a ‘1-string’ and a ‘3-string’ (s = 1) or of a ‘2-string’ 
and a ‘4-string’ (s =;). Finally, we remark that in all cases decreases with increasing 
L, so that in the limit L +  cc one recovers the string-type states discussed previously, 
[6 ,7 ,25]  at least for the ground state. However, at finite L it is extremely important 
to allow for non-zero E; ; setting = 0 from the outset, i.e. considering only the centres 
of the strings, one finds c = 1 for  all values ofs, an  obviously incorrect result (this can 
actually be shown analytically). On the other hand, the small but non-zero values of 
E, make the numerical solution of (10) quite difficult because some of the factors 
become extremely rapidly varying. This is why we were unable to go beyond L = 256 
for s = 1 or  L = 100 for s = $, whereas for s = $, where there are no complex pairs, even 
L = 2048 could be handled fairly easily. 

We use these data to extract three different values of the effective coupling constant 
at length scale L. These are given by 

and 

Eo - EOL =  TU/ L ) [ 3  k / ( 2  + k )  + ( 2 ~ g , ) ~ / & k ]  

E t -&oL=(2n-v /L ) [3 /2 (2+ k ) - T g , / & k ]  

E,  - EOL =  TU/ L ) [ 3 / 2 ( 2  + k )  + &TgJ k ] .  

Here k is 1 , 2  and  3 for the s = i, 1 and 4 models, respectively. co is the exact ground-state 
energy per spin and U is the velocity, both determined from the L = a  Bethe ansatz. 
The values of g, (L) ,  g , (L )  and g , (L )  are plotted against In L for the three different 
models in figure 3. The fact that all three couplings go to zero for large L shows that 
the O( 1/ L )  predictions are correct. When g is small, the three couplings, g,, g, and 
g, should approach each other, since they differ by amounts of O(g’). For values of 
L at which g is small it should vary with L according to the one-loop p function result 

We see that all the couplings do  seem to be quite small, even for only moderately 
large L. This is deceptive, however. The normalisation of g which we have chosen, 
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following Cardy, was determined by normalising the two-point function of the marginal 
operator. It does not necessarily reflect the true expansion parameter, i.e. the size of 
the O(g*) corrections. This is difficult to estimate without doing perturbation theory 
to O(g'), but if we simply determine it from the one-loop p function we estimate the 
true expansion parameter as 

gexp 4.irg/&k. 

These estimates could easily be wrong by a factor of 2 or more. Thus the actual 
expansion parameters are not so small for chains of moderate length. In  the s = i case, 
gexp ranges from about 0.26 at L = 20 to 0.1 1 at L = 2048, i.e. the coupling is barely 
small enough that first-order perturbation theory is useful. The three different estimates 
of g for the largest L differ by about O.lg, i.e. 8gexp= O(g:xp) as expected. In the s = 1 
case the range of gexp is from 0.27 at L = 20 to 0.17 at L = 256. Again the variation in 
gexp is O(gtxp). For the s = $ model the average value of gexp is about 0.12 by the above 
estimate. We suspect that this rather badly underestimates gexp in this case; i.e. the 
O(g*) corrections seem to be quite important, given the large variation in the estimates 

The flow of the coupling with L (for the average of g,, g, and gc) is compared with 
the O(g) renormalisation group result of (6), for the s = i  model, in figure 4. We see 
that even at the largest available length, 2048, the coupling is barely small enough for 
the O(g) result to hold. 

of g. 

0 0.05 "'"I 0 

n 
0.03 

0.01 

1 2 3 4 5 6 1 8  
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Figure 4. Comparison of the average effective coupling constant g.,, = (g,+g,+ t , ) / 3  (0)  
with the one-loop renormalisation group prediction (with a particular choice for g,,) g,? 
(31, as functions of L for s =;. 
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